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F-CONVEX FUNCTIONS

Aharon Ben-Tal and Adi Ben-Israel

ABSTRACT

Let F be a famiiy of functions: R"+R. A function:
R®+R is called F-convex if it is supported, at each point,
by some member of F . For particular choices of F one
obtains the convex functions: R"+R and the generalized
convex functions in the sense of Beckenbach. F-convex
functions are characterized and studied, retaining some

essential results of classical convexity.
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F-CONVEX FUNCTIONS

Aharon Ben-Tal and Adi Ben-Israel

§1. INTRODUCTiLN

Let F be a family of functions: Rn-rR, depending on (n+l)
parameters {x*,E*} € R" xR. A function f: R"+R is called
F-convex if its graph is supported at each point by some member
of F, see Definition 2.1. For particular choices of F, the
F-convex functions reduce to the ordinary proper convex functions
(Example 2.2) and the sub F-functions of Beckenbach (Example 2.3

and Proposition 2.4).

In this paper we study the basic properties of F-convex

functions.
Sections 2 and 3 contain definitions and examples.

Section 4 gives first order conditions (so called because
they involve only first derivatives and the "qradients" {x;,Eg}
defined in 3.2) for F-convexity. For families F € A, gee
Definition 3.2, F-convexity is characterized in Theorem 4.2 by an
analog of the gradient inequality. The remaining results in Sec-
tion 4 are conditiohs for F-convexity or strict F-convexity, in
terms of the mapping: x-*{xg(x), E;(x)} or the F-gradient mapping:

x-'x;(x) , see Definition 3.3.
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Second order conditions for F-convexity and strict F-convexity

2re given in Section 5. These conditions involve the matrix

— - * * [
(5.1) H(x) = fxx(x) Fxx(xf(x). Ef(x). x)

which in the classical case reduces to the Hessian matrix (Example
5.2). The main results here are Theorems 5.1 and 5.5. An analog
of the differential inequality of Peixoto [14), characterizing
sub-F functions, is obtained as a special case (Example 5.3).

Section 6 deals with the monotonicity properties of the

*

f
certain classes defined in 6.1. The derivative of x; is computed

F-gradient x_ of an F-convex function, where F belongs to
in Lemma 6.2, and the result is used, for the separable families
(6.10), to establish that x; is a Po-function [P-function] if £
is F-convex [strictly F-convex], see Theorem 6.4.
In a sequel paper we study the corresponding generalizations
of conjugacy and duality in the sense of Fenchel [16]. These results

involve a conjugate family F*, and are hidden in the classical case

by the fact that there F=F*,

P e K — N
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§2, F-CONVEX FUNCTIONS: DEFINITIONS AND EXAMPLES

2.1 Definitions

Let F be a family of functions: R" +R with common domain X

(2.1) x & Nn{dom F: FEF}
and range
(2.2) = 8 U(range F: F € F} .

Let f be a function: R®+R with domain
(2.3) dom £ C X

and let S be an open subset of domf. Then f 1s called

F-convex in S if for every x €S, there exists an F€F such that

(2.4) f(x) = F(x) and f£(z) > F(2) for all x¥z€s§s, o

in which case F is called a support of f: S at x. The function f

is called strictly F-convex in S if strict inequality holds in (2.4)

for all xs¥z€s.

If there is nc need to specify S, for example if S =domf,
the above names are abbreviated by omitting S, e.g., F-convex,

suppor: of f at x, etc.

l)'l‘he name F-convex function was used recently ([15], p.241)

to denote the sub-F functions, see Fxample 2.2
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2,2 Example

Let F be the family of affine functions: Rn-vR., Le.l,
{2.5) Fe {F(.) = <x*, »> - E*; x* € R®, E* € R} .

Then a function f: R®+R is F-convex if and only if it is a proper
convex function, i.e., a convex function whose epigraph is a non

empty set containing no vertical lines, ([16], §4).

2.3 Example

Iet F be a family of continuous functions: R+ R with
domain X = (a,b) and such that
(B) For any two distinct points in X, say,

a < x1 < x2 < b

and any two real numbers {yl,yz}, there is a unique F € F

gsatisfying

We call such an F a Beckenbach family in (a,b). E.F. Beckenbach [1]

called a function f: (a,b) *R a sub-F function if for any two

points

< X. < b

ac<x
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the member of F, 1-"12, defined by
(2.6) Flz(xi) = f(xi). (i=1,2) ,
satisfies

£(x) < Flz(x) R x, <x<x, .

M.M, Peixoto ([13),(14) Theorem 1) showed that if f is a sub-F

function and a < X, < b then there exist two functions

rieF, {i=1,2) ,
such that
Pi(xo) = f(xo) ’ (i=1,2) .'
P,(x) < F(x) < £(x) , (a<x<xy) ,
and

A

rl(x) in(x) f(x) , Xg < X < b .

(Furthermore, if the derivatives f'(xo), Pi(xo) and Fi(xo) exist,
they are equal). Thus both !'1 and 1"2 support f at Xq

Therefore every sub-F function is F-convex. We will now prove

the converse for Beckerbach families F .
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2.4 Proposition

let F be a Beckenbach family in (a,p). Then a function

f- (a,b) *+R is F-convex in (a,b) if and only if f is a sub-f

function.

g.'.'oof.

The proof of the "if" part was cited above.

To prove "only if" suppose f is not a sub-F function, i.e.,

there are three points
a<x1<xo<x2<b

such that the function I-‘12 € F, defined by (2.6), satisfies

(2.7) rlz(xo) < t(xo) :

Suppose that F, € F is a support of f at Xy o i.e.,

(2.8) f(xo) = Fo(xo) an' f(x) 1Fo(x), a<x<b .

From (2.6), (2.7) and (2.8) it follows that F12 and Fo intersect
twice over the interval (a,b), contradicting (B). Therefore f is

not F-convex. &)

2.5 Bx%

let G (x,y,2) Do a continuous function: (a,b)xRxR+ R, such that

(P1) For 2ach {xo,yo.ya} € (a,b) xRxR, the differential equation /



(2.9) y" = G(x,y,y'), (a<x<b) ,

has a unique solution y=y(x) satisfying
(2.10) y(xo) =Yy y' (xo) = y6 5

(P2) The solution of (2.9) is continuous with respect to the

initial values y,, y(') .

(P3) For any two points {xi,yi} € (a,b) xR (i=1,2) with

x, ' Xy, there is a unique solution of (2.9) satisfying

(2.11) yix) =y, , 1=1,2 .

let F be the Beckenbach family of solutions of (2.9).

M.M. Peixoto ([14] Theorem 2) showed that a function f€C?(a,b)

is a sub-F function if and only if

(2.12) £* > G(x,£,£') , a<x<b .

2.6 Bxa_mgle

While sub-F functions are continuous (([1l],(15) p. 242), an
F-convex function need not be continuous in its domain, even if
each PEF is continuous:

Let F be the family of functions: R-+R

P(x) = F(x*,E*;. x) = E'-'sin(e'x.lx' -1)
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depending on the two parameters
x* >0, 0 <g* <1,

Then the function

1l if x#0
f(x) =
0 if x=0

is F-convex. Indeed, for every x¥0, the function F =F(x*,u *;.)

defined by
log(l + -2’1)

e I A
supports £ at x. Alsoevery F€F supports f at 0.

We show now that an F-convex function inherits from F its

lower semi continuity.

2.7 Proposition

Let F be a family of 1l.s.c. (= lower semi continuous) functions

and let f be F-convex in domf. Then f is l.s.c. in domf.

Prcof.

Suppose f is not l.s.c.. Then there exists an x € dom £

such that ,

(2.13) £(x) > lim inf £f(y) .
y+x




let FEF support f at x. Then

F(x) = f(x) > lim inf f(y) > lim inf F(y),
y+x y+*x

by (2.4) and (2.13),

contradicting the lower semi continuity of F. a

2.8 Notes

For further generalizations of convexity see the surveys in

([2), Chapter 4), (4]}, and ([15], Chapter VIII).

For functions of several variables, the analogs of the sub
F-functions are the subfunctions in particular the subharmonic
functions; see [2] p. 146, [3] and [8], where applications to

second order differential inequalities are surveyed.




§3. REQUIREMENTS ON F

3.1 General

With Examples 2.2, 2.3 and 2.5 as our motivation, we consider
from now on only families F of functions F: R" + R depending

continuously on n+1 parameters
{x*'Ef} € X* x =%

where the sets of parameters X* and =* are given subsets of R"

and R respectively. The general member of F is thus denoted by
(3.1) F(.) = F(x*,8*; +), (x*€X*, E*€E*) |

with function values

(3.2) F(x) = F(x*,£*; x), XEX .

We assume that the mapping: {x*,£*} » F(x*,{*; -) is one to one

on X*xE* j,e., F(x*,E*;-) 1is uniquely determined by {x*,g*} .

3.2 The class A

Let Dk(x) denote the functions: R®+ R which are k times

differentiable in X. If F C D(X) we define the set

F
(3.3) z & U{range[ : FEF}) ¢ RxR"
F

where Fx is the gradient of F with respect to x.




A family F of differentiable functions is said to be in

class A, den‘pted by T € A, if for every x€X and [5] €2z, the

system
(3.4) £ = F(x*,E*; Xx)
(3.5) y = Fx(X*,E*; x)

has a unique solution {x*,E*} € X% x =%,

If FCD(X) and if f and S are a function: Rn-*'R and

an open subset of domf respectively, we denote by

(3.6) £RF
the facts
(D1) S Cdomf C X
(D2) f € D(S)
' £ (x)
(D3) range { : XES} C 2 ,
fx(x)

We abbreviate f defF by £ ™~F,

If FeA, f~F and x € domf we denote by
(3.7) (xg(x), Eg(x))

the unique solution of
(3.8) f(x) = F(x*,E*; x)

(3.9) fx(x) = Fx(x*,c*; %)




A family F of differentiable functions is said to be in

class A, den}:-ted by F € A, if for every x€X and [5] €27, the

system
(3.4) & = F(x%,6%; x)
(3.5) y = Fx(x*,E*; x)

has a unique solution ({x*,f*} € X* x =%

If FCD(X) and if f and S are a function. R"-'J’R and

an open subset of domf respectively, we denote by

(3.6) £RF
the facts
(D1) SCdomf C X
(D2) f € D(S)
' f(x)
(D3) range { : X€ES} C 2z ,
fx(x)

We abbreviate f dgmfF by f£~F,
If FEA, £f~F and x € domf we denote by
(3.7) (xg(x), Eg(x))

the unique solution of

(3.8) f(x) = pF(x*,E*; x)

(3.9) fx(x) = Fx(x*,g*; %) G
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3.3 The class C

A family F is said to be in class C, denoted by F € C, if
for every {x*,x} € X*xX the function F(x*,; X) 1is a strictly
decreasing function of £*,E*€EZ* ., In this case, we denote by

FI(x,-; x*) the inverse function of F(x*,*; x) . It satisfies

the identicy

(3.10) E = F(x*,Fr(x,E;x*);x), E€Z .

If FeANC, £~F and x€domf, then (3.8) gives
(3.11) £* = FY(x,£(x); x*)
which, substituted in (3.9),! gives

(3.12) £.(x) = F (x*,FE(x,£(x); x*); x) .

The unique solution of (3.12) is then called the F-gradient of £

at x, and is denoted by x;(x) .

3.4 Example
Let F be the family (2.5) of affine functions: R" + R.

Then

(a) FCD(Rn), Fx(x*,E"; x) = x* for every FE€F and xERn,

and (3.3) gives 2 = RxR",
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(b) ¥F€A. For every x€R" . and [5] € R x R? , the unique solution

of (3.4)-(3.5" is

X*=y, E*=cy,x -€.

(c) Feg.

(d) f£=~F means that fe€D(dom f).

(e) If f=F then for every x € domf¢

(3.13) x;(x)-- fx(x),' 5;(;:) = <f (x), x> - £(x) .

Thus the F-gradient of f, x}

£ coincides here with its ordinary

i ¢ £
gradient £ -

3.5 Examgle

let ¢ be a given function: X*xX-R and let the family F

consist of the functions F(x*,E*;+), {(x",E*} € X* x Z* , with values
(3-14) F(X"E‘; x) = ¢(X',X) s C.O X € X,

Then:

() Fel:. if and only if the following two conditions hold:

(al) ¢(x*,-) €D(X) for every x*E€X*,

(a2) For every x€X, Y€ :' range ¢x(x",') , the system
ys= ox(x",x)

has a unique solution x* .
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(b) FEC.

(c) Let

at x

(3.15)

Also

(3.16)

FEp, f~F and x€domf. Then the F-gradient of f£

x;(x), is the unique soluticn x* of

£.(x) = ¢ (x*,%)

Eg(x) = ¢(xZ(x),%) - £(x)

A concrete example is the following family F defined by

A B i 1
F(x*,E*;x) 2 ]} x; " (x;) + - E*
i=] *, 1

X* « R, E*=R, X =nNdom ol

i

where for every i=1,2,...,n, ¢ : R*R, is differentiable and

ol >o0.

x5

or

The condition f =F for this case is

The F-gradient is

*
xf(x) = (t

fn.>0 im1,2,.5.;n
- fxi<0 1-1,2,...,!1.
1
fxl(x)/¢x1(xl)
t2 (x) )
X) - K 4

fon(x)/¢:n(xn)
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§4, FIRST ORDER CONDITIONS FOR F-CONVEXIB

In this section we give first order conditions (<¢n-called

because they involve only first derivatives and the "gradients"

{x;,EE ~of f, see (3.7)) for F-convexity, for families F in

class A . These conditions use the extremal property of the

supports implied by the inequality (2.4). First we require

4.1 Lemma

let FE€Ena, £: Rn*R, and let f g F. If f: S is supported

(by some F € F) at a point x€S, then
* * e
(4.1) P(xf(x).Ef(x). )

is the unique support of f at x.

Proof.

Let F(x'a,ﬁar) € F support f: S at x, i.e.,

(4.2) h(z) & £(z) - F(x},E8:2) 20, VzeEs,
and
(4.3) h(x) = £(x) - r(xa,eg;x) = 0,

Therefore h(z) is minimized, in S, by 2z=2x. Since S is open,

this implies that x is a critical point of h, i.e.,

(4.4) h, (x) = £ (x} - Fx(x;,sa;x) =0 ,




Since FEQ, a comparison of (4.3)-(4.4) and (3.8)-(3.S) shows

that
* *® =~ * *
{xo,zo} {xf(x). Ef(x)}
proving that (4.1) is the unique support at x. O

4.2 Theorem

Let FGQ, f: Rn-»R, and fiF. Then f is F-convex in S

if and only if for every x€S
(4.5) £(z) > F(xg(x),Ex(x);iz), V xgz€S,

Furthermore, f is strictly F-convex in S if and only if for

every XE€S

(4.6) £(z) > r(x;(x),a‘;(x);z), Vx#z€ES.

Proof.

If. From (4.5) and (3.8) it follows, for any x€S, that
the function (4.1) supports f: S at x. It is the unique support
if (4.6) holds.

Only if. Let f be F-convex in S. Then, by Lemma 4.1, for
any x€8S, the function (4.1) is the unique support of £f: S at x.
The inequality (4.5) then follows from (2.4). Similarly (4.6)

follows from the strict F-convexity of f. o
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4.3 Example

Let F be the family (2.5) of affine functions: R®+R,

F = {F(x*,E*;+) = <x*,.> - E*: X*€R", E*€R} .

Then, using (3.13), the inequality (4.5) reduces to

f(z)_>_<fx(x),z-x>+f(x), Vxyz€es,

the classical gradient inequality.

4.4 Corollary
(a) let FE€A, and let f: Rn+R, f R F, be F-convex in S . Then

f 1is strictly F-convex in S if and only if the mapping
(4.7) x + {xg(x),£g(x)}

is one to one on S.
(b) Let, in addition, F€C., Then f 1is strictly F-convex in S

-~

if and only if the mapping

(4.8) x;: x + x;(x)

is one to one on S .

Proof.

From Lemma 4.1 it follows, for every x€ S, that the function

(4.1) is the unique support of £: S at x. By definition, f is




strictly F-convex in S if, and only if, every support of f: S
supports f at exactly one point of S . This is equivalent to

the mapping (4.7) being one to one on S.

To prove the last part, note that the additional hypothesis
Feg implies

1

(4.9) [x 51

x}(x) on S] = [x 151 {xf(x),E5(x)} on S].

Indeed, the implication =—=> is always true. Conversely, suppose

that x;

Xy #xz . su-~h that

is not one toone on S, i.e., there exist xl,xZES %

(4.10) x§(x,) = x}(x,) a x? .

let &} 4 Ef(x,) = FI(xi,f(xi);xa) and let

i A * ok =
F (.) o F(xolgi1 )p (1 1'2) .

Then
F (x,) = f(x.), F::(xi) = £ (x,), i=1,2 .

Hence by Theorem 4.2, Ft supports f at xi B & 2 EI = E; , then
this and (4.10) contradicts the fact that (x;,E;) is 1:1, estab-
lished earlier. Thus suppose that C; > E; . This implies, since
FeEc, that Fl(z) < P!(z) ¥ z€S. 1In particular

2 1 = {

) 3 (xl) > F (xl) f.xl)

contradicting the fact that F? is a support. (8
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4.5 Theorem
Let Feanc, f: R"+R, and £ 2 F. Then f is strictly

F-convex in S if the following two conditions hold.

(a) The mapping xE is one to one on S .

(b) For every x€S and for every sequence {zk} €S which either
converges to a point y€bdry S or lzkl +o there exists an

X €S such that
(4.11)  lim sup {F'(z,£(z).,x}(x) - F (%, £(%),x2(x))} < 0
Koo £ -

where FI is defined in §3.3.

Proof.

For any x€3S consider the function

(4.12) T(z) 8 FI(z, f(z); x;(x) s

We show first that 2z=x is a critical point of T.

Differentiating the identity
(4.13) F(x*, Fl(y, £(y)s x*); y) -f(y) = 0

with respect to y we get

(4.14) Fx(-,-;') +F€.(-,':-) [Pi(y.f(y):x') +F§(y,f(y):x*)fx(y)l -fx(y) =0

where

(epe1s) = (x*, Fl(y, £(y)ix*); y) .




Now Fe.fﬁ, since F€C. Therefore, for y=x and x*=x;(x) '

it follows from (4.14) and (3.12) that

FL(x,£(x); x3(x)) +Fp(x,£(x); Xp(x)) £ (x) = 0

(4.15) £

which, by (4.12), is the same as Tz(x) =0, proving that z=x is
critical.

Moreover, z=x is the unique critical point of T in S.

For suppose that x#x'€S is another critical point of T, i.e.

T, (') = FL(x',£(x'); xg(x)) + Fg(x' £(x')ix}(x)) £, (x') =0

implying that for y=x' and x*=x;(x) , (4.14) reduces to
F(x*(x),FE(x',£(x'); x*(x)); x') -£_(x') =0
X f ’ ’ ’ f ’ X

which, together with (3.12), implies that

®7 0y oot
xf(x)-xf(x) v

contradicting (a).

We show next that

(4.16) sup{T(z): z€S} = T(x) .

Indeed if this supremum occurs at some z=y€bdryS or if a

supremi zing sequence {zk} is such that lzkl + o then the

supremum is also attained at XES, by (4.11). Therefore =z = X

since the latter

is a critical point of T, proving that ;c-x,




ie the unique critical point in S, and therefore (4.16) becomes

FI(x,f(x); x;(x)) > FI(z,f(z",- x;(x)) , Vx#z€S§ ,
which is the same as

£(z) > F(xh(x), Fl(x,£0x); x}(x)); 2), Vx#z€sS,

proving that f is strictly F-convex in S, by theorem 4.2. O
4.6 Example

Consider the family
F = {¢(x*,*) -E*: x*€E€EX*, E* € =*} ,

ot Zxample 2.5 and let FEA, f: R"+R, and £ X F. Then

.condition \0) of Theorem 4.5 follows from

(bl) For every x* € rangg{x;(x): X €S} and every sequence {zk}

as in Theorem 4.5(b),
(4.17) lim inf{f(zk) -¢(x*,zk)} = +0o O

k+ .
In particular, if
S = domf = X = R"
and
(X*,x‘ * E

(4.18) lim sup - <* V x* € range Xe o .

I xl +




then .condition (b) of Theorem 4.5 is satisfied if

Note that (4.18) is trivially satisfied by the family F of
affine functions. Hence, a differentiable function f£: R" - R

is strictly convex if the following two conditions hold.

(a) The mapping

X - fx(x)

is one to one on R" .

(b) lin ) e, s
Ixlow X

As a concrete example of condition (bl) let F be the family
of functions: R?+R given by

X5 R
(4.19) F(x*,E*; x) = x; e + x*z*x2 e - E*

with X=X*=R?, ES*aR.

Consider the function f: R?+R

2x -X
(4.20) £(x) = % e 1. % x2 e 1

with dom f = R? . Then f is F-convex in R? since:

(a) The F-gradient

3x
SRS
x;(x) =
x

2




is one-to-one, and

(4.21) range x; = {(x],%; :
(b) £(z) - ¢ (x* z) = (1 ezzl+1 22 e_zl) - (x* e-zl+x z e-zl) =
02) T 37 2“2 1 272 -

2z -2 -2

=%—e 1. (x’i+%-x;2)e l+% (zz-x;)ze &

by (4.21) the coefficients of all exponents are positive and hence

1im [£(z) - ¢(x*,2)] = ¥ x* € range x‘f' ;

'zl-m




"

§5, SECOND ORDER CONDITIONS FOR F-CONVEXITY

In this section we collect second order conditions (involving

second derivatives) for F-convexity.

5.1 Theorem
Let FEAND2(X), £: R®"+R, £ 2 F and f€D?(S). Then:

(a) £ is F-convex in S only if, for every x€S, the matrix

(5.1) Hx) 8 £ () - P (x2(x), E2(0); x)

XX
is positive semi definit:e.l

(b) Let S be convex and let f and each F€F be twice conti-

nuously differentiable in S. Then f is F-convex in S if

1
(5.2) <y, ! (fxx(x+sy) -Fxx(x;(x).eg(x); X +8y))yds> > 0 ,

for every x€S and y € S-x.

If strict inequality holds in (5.2), F is strictly F-convex in S.

Proof.

(a) lLet f be F-convex in S. Then, for any x€S, the function

(5.3) h(z) & £(z) - Fxg(x), £g(x); 2)

1.'6‘ matrix H€RM™ ig called here positive semi definite if

<Hz, z> > 0, v zeRr",

We do not mean by this that H is symmetric.



'0

satisfies

(5.4)

and

Therefore 2z =X

h(x) =0, hz(x)=0, by (3.8)-(3.9),

h(z) >0, ¥ z€5, by Theorem 4.2,

it follows that

minimizes h in S. Since S is an open set ,

hzz(x) = H(X)

is positive semi-definite.

(b) The function h

h(z)

Thus, {(5.2) implies

(5.5)

proving that f

is

of (5.3) satisfies
= h(z) -h(x) -<hz(x), z-x>, by (5.4),
= <(hz(x+t(z-x)) -hz(x)), z-x>, for some 0<t«<1l,

by a mean value theorem ([(12]), Theorem 3.2.2),

1
= <z-x, ([ h_ (x+st(z-x))ds)t(z-x)> ,
[}

by a mean value theorem ([(12], Theorem 3.2.7),

1
-1, { (£, (x+sy) = F__(x}(x),E%(x) ;x+sy))yds> ,

where y = t(z-x).
that

h(z) >0 , vzEs ,

F-convex in S, by Theorem 4.2.




'D

Similarly, strict inequality in (5.2) implies strict inequality

in (5.5), hence strict F-convexity. 0
5.2 Example

let F be the family (2.5) of affine functions: R" + R,

Then the matrix H(x) of (5.1) reduces to the Hessian of £

H(x) = fxx(x)

and Theorem 5.1 gives the classical conditions for convexity in

terms of the Hessian.

5.3 Example
let F be the Beckenbach family of solutions of the second

order differential equation
(2.9) y" = G(x,y,y'), (a<x<b) ,

‘discussed in Example 2.5. Then (5.1) becomes
H = f" (e G(x'f,f') .

Now, suppose that FcC*(X), fe€cC?(s), then H(x) >0 implies
H(x+8y) >0 for 0<s<l and y sufficiently close to x. Thus
(5.2) is a strict inequality in some neighborhood of x, and we con-

clude that f is, locally, strictly F-convex. By proposition 2.4

this implies that f is locally strictly sub-F, which by ([1)]




Theorem 7) implies that f 1is sub-F globally in (a,b). This
result is the analog of [14]), Theorem 3. To get the analogous
result of ([14] Theorem 1), we need the implication H(x) >0 —
H(x+sy) >0, for 0<s<1l and y sufficiently close to x, for
which Peixoto's additional requirement, (P2) of Example 2.5, is

needed (see Peixoto's proof of [14] Lemma 1).

5.4 Definition

A mapping T: R"+R® is called one to one on R" if

(a) x,y€R", x#y=T(x) # T(y).
(b) The inverse images t"1(B) of bounded sets BCR" are

bounded.

5.5 Theorem

Let Feancnc?(R"), f: R"~R, fe€C?(R") and f£~F.
Then f 1is strictly F-convex in R® if the following two conditions

hold

(a) The mapping x; is one to one on R,

(b) For every x € R" , the matrix

(5.6) H(x) = £ (%) - F (xp(x), FF(x,£(x); x}(x)); x)

is positive definite. Conversely, if £ 1is strictly F-convex in R"

then (a) holds and the matrix H(x) is positive semi-definite for

every x¢€ rR?




Proof.

First we note, by (3.11), that (5.6) and (5.1) are the same.
For any x€R" consider now the function
(4.12) T(z) = F'(z, £(2); x50x))

As in the proof of Theorem 4.5 it follows from (a) that z=x

is the unique critical point of T in R" .

L Differentiating the identity (4.13) twice with respect to y
L we get, by using (4.15) and (3.12),
(5.7) T, (x) = 2— H(x)
: zz FE*

(where FE* is evaluated at {x;(x), FI(x,f(x); x;(x)); x}). From

? {5.7), (b) and FE€C it follows that Tzz(x) is negative definite.

Therefore z=x 1is an isolated local maximizer of T, and its

unique critical point in rR"

| Thus, by Leighton's Theorem [9], see also (17]), z=x is the
" global maximizer of T, i.e.,

Fr(x,£0x); x5(x)) > Fl(z,£(2); x5(x)), V xpzer",

which is the same as

£(z) > r(x;(x), FL(x, £(x); x;(x)); z), ¥V x¥z€eR", *

proving that f is strictly F-convex in R" by Theorem 4.2,




If f is strictly F-convex in K" then (a) and (b) follow

from Corollary 4.4 and Theorem 5.1(a) respectively.

5.6 Example
let F and f be given by (4.19) and (4.20) respectively.

Then the matrix (5.1) is positive definite

3e 1 0

H(x) =
-X
el

2x 1

and f 1is strictly F-convex in R? , by Theorem 5.5.




§6. MONOTONICITY OF F-GRADIENTS

In this section we prove monotonicity results for the F-gradien

*

f
is a P-function [Po—function] if for every x,y€domg, x#y, there

x of an F-convex function. We recall that a mapping g: R" » R"

is an index k = k(x,y) € {1,2,...,n} such that

(x -y)) (g (x) -g, (y)) > 0O [g -y ) (g (x) -gy (y)) > 0 and
xk#yk], see (10]. 1In particular, a mapping g: R" + R" is monoton

(strictly monotone] if for every x,y€domg, x#y, we have

<x-y, g(x) -g(y)> > 0 [<x-y, g(x)-giy)> > 0]. We also require

the following

6.1 Definitions

A family F is said to be in class Al ., denoted by FEAl 5
it F€A and for every Ix*,g*; x}€E€X* xZ* «X the derivatives in

(6.1) are continuous and the matrix

’ FE*(X*'E*; x) F'fc*(x*’E*‘ x) i)
(6.1) J(x*,E*; x) =
Fe,x(x*.z*; x) Fx*x(x*,E*: X),

is nonsingular, say

n"rhis matrix is the Jacobian matrix of the function

[F('r'7 x)l
Fx("'i x)

see (3.4)-(3.5).

_:'—J__—-——g




(6.2) det J(x*,£*; x) < 0 .

A family +F 1is said to be in class AZ , denoted by FEA2 '

if FeAl and for every x€ X the matrix

¢ 1 p e, -r,

(6.3) Jo(x) F [FE* x*x ~ Feay Fx*] .

a*
where all derivatives are evaluated at {x:(x),ez(x): x} , is

positive definite. J

6.2 Lemma

Let F€A NnC, f: RP+R, £S5 Fandlet £ and each FEF

-~ -~

be twice continuously differentiable in S. Then, for every xE€S,

1

(6.4) S DxER) = T ()7 H(x) H

where Dxx;lx) denotes the derivative of x; at x and 3o

and H are given by (6.3) and (5.1) .respectively.

Proof.

For any x€S consider the system

(3.8) F(x*,E*; x) - £(x) =0

(3.9) Fx(x*,E*; x) -fx(x) =0 *

which, since F€A, has a unique colution {x;(x),t:;(x)}. The

implicit function theorem, applicable since FGAl , then gives . H
- A




- 32 -
* T -1 * *
D, £ ¢ (x) FE* F s £ (x) - Fo(Xe(x),82(x); x)
(6.5) =
) *
D X (x) Frex Fytx £ox (X))~ F o (x2(x),EL(x); x)

where the derivatives

T
Fe*x Fx*x

are evaluated at {x;(x),gg(x); x}.

Using (3.9) and (5.1), we rewrite ‘6.5) as
* T * -
(6.6) FE.Dxﬁf(x) + Fx*Dxxf(x) =0
* =
Now FE*"O since F€C. Eliminating DxE;(x) from (6.6) and

substituting in (6.7) gives

1
FE* [F£* x*x E*x x*]D xf(X) >

The proof is completed by showing that the matrix

H(x) =

{ - F

FE* x*x E*xe*]

is nonsingular, which follows since

T 1 FE. F.:i
(6.8) Get[FeaF uy = FruyFyel = F’E‘, det ,
Fcﬁx Fxﬁx -

DY Sylvester's identity ([7], Section II.3),

¥ 0, since FGCﬂAl 0
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6.3 Examgle

let © be the fanily (2.5) of affine functions: R? » R. ﬁ

Then

x;(x) = £ (x), by Example 3.4,

Jofx) =1 by (6.3) since F_, = I, Fg*x =0

and (6.4) reduces to the obvious
(6.9) Dxfx(x) = fxx(x) .

If £ is a convex [strictly convex] differentiable function, then
its gradient fx is monotone ([strictly monotcone] in dom f . This

is an immediate consequence of the gradient inequality (Example 4.3),
and Theorem 4.2, Alternatively and less directly, the monotonicity
of fx can be shown to follow from (6.9) and the fact that fxx is
positive semi definite, se2, e.g. ([12], Theorem 5.4.3. Two other
cases in which the factorization (6.4) is used to establish a mono-

tonicity property of the F-gradient x; , Will now be given.

6.4 Theorem

Let FE€EA, nc?(X) where X = I, xI,x...xI is the product

of open'inte':vals IiCR, (i=1,...,n). Let each F€F be of the

form

n 5
(6.10) F(x*,E*;x) = 121. r‘(x;.xi) -g*




where Fi(x;,-): Ii-’R (i=1,2,...,n). Let f: R+ R be F-convex

[strictly F-convex) with domf D X and f€C?(X). Then x; is

a P.-function [P-function] in X.

0
Proof.
From (6.10), (6.3) and FEEA2 it follows that
JO(X) - Fx*x

a diagonal, positive definite matrix. From (6.4) and Theorem 5.1(a)
it therefore follows, for an F-convex function f , that Dxx;(x)

is a P0
by (10,, Coroilary 5.3.

-matrix, (see ([5]},(6)), proving that x; is a Po-function,

if f is strictly F-convex, then, by Corollary 4.4 (b)
(applicable since F€C), it follows for any x,y€X, x#y, that

there is a k =k(x,y) € {1,2,...,n} such that
* *
X, ¥ Y) and xf(x)k # xf(y)k '

proving that x; is a P-function. D

A special case of Theorem 6.4 is the following, one dimensional

AY

result:

6.5 Corollary
let FGQ nce be a family of functions: R-+R, let f: R+R,
S an open subset of domf, and let f and each FE€F be twice

continuously differentiable in S. If f is F-convex in S then x;

is a nondecreasing function in S .




T

Proof.
Using (6.3), (6.8) and (6.1) we write

1
E*

(6.11) Jy(x) = 57— det J(x;(x), g;(>.); x)

v

0, by (6.2) ari FE€C.

~

Therefore

4
dx

xg(x) > 0, by (6.4) and Theorem 5.1(a). O
6.6 Corollary

let F, £ and S be as in Corollary 6.5, where S 1is an interval

(a,b). If

£°(x) > F  (x3(x), EX(x), x), X€S,
then f 1is strictly F-convex,

Proof.

From (6.4) and (6.11) we infer that xg is 1:1 on (a,b). &s

in the proof of Theorem 5.6 . this implies that z=x 1is a local
minimizer of h(z) & f(z)-—F(x;(x),E;(x); z) and that no other
critical point exists in {a,b). Hence z=x 1is the unique global
minimizer of h(z), which was previcusly shown to be equivalent

to the strict F-convexity of £ . O




>

6.7 Corollazx

Let F be as i Theorem 6.4, with x=R". A function
f: R®"+R with dom f =Rn, fGCZ(Rn\, f = F is strictly F-convex,

if the matrix H(x) 1is positive definite.

Proof.

Follows from (6.4) and Theorem 5.5.
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